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LAUNCHER DYNAMICS STUDY

Part R

Approximate Formulas for Pitch Velocity at Tip-off

ABSTRACT:

The preliminary design or feasibility study of a straight rail launching

system requires, in addition to layouts and material composition, estimates of

the accuracy of the system. Possible sources of inaccuracy, which is defined to

be nonreproducable tip-off velocity, are thrust misalignment, rail curvature

arising from manufacturing processes or uneven heating due to the sun, shaking

forces of unknown phase which might exist in SOSR designs, or excessive amounts

of friction between shoes and rail.

Our purpose in this report is to present techniques of analysis for a

straight rail system with a view toward obtaining estimates of changes in pitch

velocity of the rocket at tip-off as might exist because of the presence of these

various disturbing agencies.
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LIST OF SYMBOLS

coordinates attached to launcher

*m' coordinates of mass center of missileem m
e angular rotation of launcher from static position

v angle of elevation in absence of dead weight

0 st angular rotation due to dead weight

Phelical spring constant

a, b, c, e, f, il linear dimensions of launcher and missile

WL weight of launcher

Wm weight of missile

C f (g) function specifying curvature of the rail

additional angle of inclination of missile due to rail curvature

T thrust

6, C2 thrust misalignment parameters

cis I' Np x mass unbalance parameters

angular frequency of shaking force

coefficient of friction

P, Q shoe loads

IL  moment of inertia of launcher about pivot

moment of inertia of missile about mass center

Additional symbols are defined in the body of the text.



I. INTRODUCTION

The preliminary design or feasibility study of a straight rail launching

system requires, in addition to layouts and material composition, estimates of

its accuracy. Possible sources of inaccuracy, which is defined to be nonreproducabTe

tip-off pitch velocity, are thrust misalignment, rail curvature arising from

manufacturing processes or uneven heating due to the sun, shaking forces which

might exist in SOSR designs, or excessive amounts of friction between shoes and

rail.

Our purpose in this report is to present techniques of analysis for a

straight rail system with a view toward obtaining estimates of changes in pitch

velocity of the missile at tip-off as might exist because of the presence of these

various disturbing agencies. Since these results are to be used for feasibility

studies or the like, methods will be developed so that these quantities can be

obtained by means of slide rule or desk machine calculations rather than by

means of analogue or digital computing devices. For the detailed analyses

attendent to final design proposals, numerical investigations of the type carried

out in many of the previous technical reports of this project are necessary.

All of these methods are associated with a launcher whose gross con-

figuration can be accurately represented by the two degree of freedom model

which appeared in TAM Report No. 552, University of Illinois, Urbana, Illinois,

1960. As shown in Fig. 1 , this model consists of a rigid L-frame supported

at a single point 0. Since this is a pivot point, horizontal and vertical motion

is prevented and so only rotation is possible. Stability is provided by some

equivalent helical spring which represents the overall flexibility of the structure.

The launching rail AB may have some small curvature as indicated.
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FIGURE I

The missile is represented by two masses rigidly attached to two sleeves

that slide along the arm of the launching frame. These masses are the source

of rotational inertia for the missile. (We only consider systems in which the

shoes of the rocket leave the rail simultaneously.) Finally the thrust force is

denoted by T (t).

This dynamical system has two degrees of freedom. The coordinates

used to describe its configuration at time t are the angular rotation 0 (t) of

its arm as measured from equilibrium and gm (t) , the distance the mass center

of the missile has moved up the rail. As in all previous work, it is again assumed

that the angle e is small so that the usual approximations based on linearization

are permissible.
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The differential equations which describe the motion of this system are

very complex. We may; however, in certain instances, bypass complete integra-

tion of the equations of motion of any system. Our efforts here are based on the

reduction of the differential equations of motion to integral equations and a sub-

sequent solution by iteration. The necessary number of steps in the iteration

depends on the numerical values of a parameter which is the ratio launch time

versus natural period of the system. In some instances we can employ the

principle of impulse and momentum to interpret these approximations.

Equations of Motion for the Model

We begin with a discuss ion of the kinematics of the model shown schemati-

cally in Fig. 2. The missile is represented by the bent ABCD and the launcher

by the rigid frame ORS . Three coordinate systems are introduced. The first

of these labelled XY in the figure is fixed to ground, OX being in the tangent

plane to the earth in the direction of aim. A second system denoted by xy is

also fixed and in the XY-plane; however, the x-axis of this set of coordinates

makes an angle ^ + est with X. This total angle is the angle of elevation when

the structure is loaded with its dead weight. Finally the - system is attached

to the launcher and rotates with it. This angle of rotation which will be called 0

represents the deviation of the launcher from its equilibrium position due to its

weight.

The rail RS , has a slight curvature. Its equation in the eyl-system will

be taken in the form

T1rail = '1o + C f ( )



C4.

oooq~i



5.

where c is small and of the order of magnitude of the angle e . If ( Tm'm

are the coordinates of the mass center of the rocket in the h-system, the angle

of rotation b of the missile relative to this set of coordinates is given by

f(9 +b) - f( a)
~ e m m

C

To obtain the equations of motion for the system we first consider the

free body diagram of the missile shown in Fig. (3). These equations will be

established relative to the 97 -coordinates. The following forces act on the rocket:

T (t) - the thrust force with misalignment parameters c 2 and 6

In- CS 2 2 sin ( fl t +X ) shaking force due to mass unbalance in

SOSR, rocket,

I X 2 sin (A t + X 1 )- shaking moment due to mass unbalance in

SOSR rocket,

Q, P - front and rear shoe loads,

p IQI , I P1 - friction forces at the shoes.

All of the quantities cC e2, 6 , I are assumed to be small so that we may

neglect products of these with 0 , 0 , or c .

For the motion of the mass center of the missile we have

m a =F

Wrn -(0o+h)O =T-W siny/

g m 0()

-U IPl -& IQI -PEf'(9 Ma)-Qef'(gm +b



U6.

C'

++
'OI

C4

- +-



-+ C 2 Il ~ a) + aQ P +b) -WQ

+ m a2 sin( 0 t+A2)+T( 6+~) (2)

The angular motion of the rocket is expressed in the following relation

im + ) = Q b -Q ch f( +b) - pAIQh - IAIQ e f'(a+b) b

- Pa -Pe f'(tm - )h-AJJh+AI , tm-a 2-T ad

+1 ix sin( Ut +X.I ). (3)

These equations containk the unknowns 9 t , P, Q. One final equation is

sufficient for a unique determination of these variables. The moment of momentum

principle with respect to the point 0 for the entire system will give one such

equation:

z -Wm Cosv7(6 m - mo )T11o + h+c 2 ) +T 6% - a -d) -T ef (t

(4)

m x2 2
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Although two more independent equations exist for the launcher, we shall not

be concerned with them here since they only serve to define the unknown forces

acting at the pivot point 0.

For the model considered we shall employ Eqs. (1), (2), (3) and (4) to

justify the approximations which will be presented in the next chapter.
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II. APPROXIMATE ANALYSES

The inaccuracies described in Chapter I enter into the analytical description

of the system through non-zero values of the parameters e, el, E2, 6, I, *

We disregard coupling effects and examine the consequences of takirg these

quantities to be non-zero one at a time.

Idealized Case (all parameters zero)

As our first problem, let us consider approximating the response of the

ideal system: the one in which all of the inaccuracy parameters are zero. In

this case Eqs. (1) and (4) become

WWM[ m -(o h)6] =T Wmsiny=T (t) T 0(5)

d D oI+I + m t2 )] + Cos (6)
t L m g m )  + 6  -m mo w m

We have neglected first order changes in moment arms for Wm and also assumed

that P is very large. Neglecting the effects of 0 in Eq. (5) we have
Tg ,t

=T0 9 i~t-~~~A9m ffi  (t-,r) Te (,r) dr" + mo

and so Eq. (6) becomes

d' m 2 + 2 cos j(t-T) Te (T) dT (7)

where I = IL + Im and = P/I . Integrating this equation with respect to t,

there results

Wm 2 2 ) ' TgCosy t- 2 Te ()dT (8)
0(1+ -- )9- + W "2 (T)dT= - I Te 0dT0

0 0
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We have used the fact that b (0) = 0. This equation is essentially an impulse-

momentum relation involving angular quantities. The first term is a change in

angular momentum reduced by a factor I, and the remaining terms are angular

impulses reduced by the same quantity. These impulses represent the effects of

the spring P and the thrust. In order to estimate 0 at tip-off, it is necessary

to know the dependence of 0 on time up to tip-off.

Previous numerical studies along with field measurements indicate

that most realistic systems have a 0-time history as shown in Fig. (5).

0

tip-off

FIGURE 5

Since according to Eq. (7) and the initial conditions the second and third

derivatives of 0 vanish at t = 0, we shall sssume that
t4

o = X(9)
4 tp
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where 0 is the pitch velocity at tip-off time t . Placing Eq. (9) in Eq. (8)
P p

and performing the obvious reductions we find that

t

T g cos y ( 2

e) = m -Tt Te )e (10)p Wm 40 _

I + - Cm(t ) +
gI m p A

For systems with large launch time T e (T) may be replaced by unity and in this

case Eq. (10) simplifies to

T g cos 7 t3

p) = ,(
PW 2(Wt)2

+ m (p)+

A comparison of this formula with known results indicates that it is fairly

accurate when the time of launch t is one-half or less than the natural periodP

of the system; that is,

2T- 1 2r
tp _ 2. 2 c

The reason for this can be obtained by converting Eq. (8),which we write more

generally as
t

A (t) + 2 f dT = F (t) , (12)

into an integral equation for and then solving this equation by iteration.

In Eq. (12)

wg 2 t
A(t) = 1+ 2 (t)9T m
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and F (t) is any forcing function. (As we shall see later most of the inaccuracies

present themselves as different forcing functions.)

By noting that

f (T) d f(t-T) 0 (T) dr (13)

0 0

if I (0) = (0) = 0,we have immediately that Eq. (12) becomes
{t

A (t) 6(t) + 2  (t-T) (T) dr =F (t) (14)

which is now an integral equation in 0 If now we change variables according to

t t
t=t u, ) A (t- B (u) 2 F (t) = G (u), n a, (15)

P (2 7r) 2(27r) n

then we have

B(u) -- +a 2  (u -v) d 0 dv= G(u). (16)

2
The solution of this equation can be expanded in a power series in a according

to

d 0 a 2n d '2n (17)U-" = --- (7

where

dO
B(u) 0 -G(u)

and
d 2+2 u dO 2n

(~u -d -
02n (u-) 2n

B(u) -- - V)

In particular taking Te (T) = I we find
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T gcost 3 0' (u) T gcstoo y v00l u =  o u U 0 ) v
0 (U'2 IA)( 6T A (u) J

so that

=-To g cosy t3  F 2  f~V 16ip -A(tp) - J o

+ Error O(a 4 4) " (18)

When a is sufficiently small the first term in Eq. (18) gives 6 (tp) fairly
p

accurately. Since

(1- v) v dv1

20 B (I)

we can write
3

O~t -T gcosyt r[ a 2  1
0(tp)= -1 (tp 20B(1)

3TO g cos Ytp
61 2

A (t) [1

T g cos t30 P
6I1

W 2 t(ut)I + - m  (tp)+

when a2/20 B (1) is small. But this expression is identical with Eq. (11).
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Numerical Solution of Eq. (16)

For those cases in which this two term approximation is not accurate

enough,additional iterations become prohibitive. The nature of Eq. (16) lends

itself readily to desk calculator computations if one converts it into finite

difference form. To do this we first break up the interval (0, 1) into n equal

subdivisions 1/n units long. If

k lkBdeB( Gk G( nBk =B(- ), e'k dui G = (
n k dk/n

then Eq. (16) becomes

k-1

Bkk (a/n 2) 2 (k-m) O'm = Gk k 2,...,n (19)
m=1

O o = 0 B1 8'1 =G 1

This set of recursion relations is readily evaluated on a desk computer for e'n
which corresponds to the tip-off pitch velocity.

We shall now show how to reduce the effects of the various disturbing

agencies to an integral equation which can be readily solved either by iteration

or recourse to the numerical procedure of Eq. (19).

Thrust Misalignment

After ignition of the motor, the thrust may not act through the mass

center of the missile. Our interest is in evaluating the difference in pitch

velocity between the ideal system and the one in which thrust malalignment is

present. If AT z eT - e where 8T is the angular response of the structure

with thrust misalignment present, then
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d A(t) 2 T6 (aa+d) + (20)" T +=" & II

Eq. (20) is the differential equation satisfied by the variation in pitch velocity

due to thrust misalignment. This is readily converted into an integral equation

in A :

S (t) + t)T()d T6(a+d) J+ d
"0 I 0

(21)

When t /T n is small two iterations are sufficient for a solution and we find that

T 6t
T(tp) A(tp) 01 [6-W- t3 +(mo -a-d)t

m
2 6 T o 5  ( o a d 3 ] (22)

KIT [ ~ T t pim -a-A (t) 16 WmnI IF- 61 p

pm

for the case of constant thrust.

For those cases in which this two term approximation is not valid a solution

of Eq. (21) based on the process of Eq. (19) is in order.

Shaking Forces

When the missile spins on the rail the equation for the deviation in pitch

velocity A s = 0 - is of the form

I 9
d [A (t) /k(t)]+ w 2  xy sin (a t + X1

t s s I

W 2+ -gm a random sin ( Q t + X T)  i23)

where X, , X2 are random angles between 0 and 2 r . This is again reduced to
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an integral equation in

(24
* ~ t + W t-cosX 1 -c (0X)] snfT+ )dIgS

deeriat. +ti moeapopriat to spea of the mean valu of +A 2 and

iTse sadadeition atio [y itrto Thes aver obtaiedy firson. thathr

Eq.e (24)canue wrtthen iano th rce form),X X inislfin

its ~ ~ ~ ~ ~0 stnaddvaina[As( hs a eotaiedb firs notin cohat

+ L 3 (t) sin X2 + L 4 (t) cos X2

where L 0(t) a1. Writing

S (t) =A (0) &s (t) + AS (t) sin X +A s 2 (t) cos X, +s 3 (t) sin 'N2

+ s4 (t) Cos XA2  (25)

we find that

A (t) A Si()+ (tt-T) i1 d7-= Li()(26)

Each of these can be solved for A8 1 (t) by the process outlined in Eq. (19).

Consequently the mean value and standard deviation of S (t )due to the
sp

initial value t (0) is
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[5 (tn) initial value so2~()]~ (tp,

Ls (t (0)1 (t&

initial value

and for the parameter X
__ .2.2

rA~t1 = , T[A5 t~)] = ~ (ti, )+A (tv)
L6 Op 2

and for the parameter X2

(t 0 
2 (t) +,& 2

4 t

0, [,& = (t 8 pP_____
s 2  X2

Consequently the expected mean value of &s (t p) is

and the standard deviation is
'[s(tp) =" 2 [a(O)] & 20 (tp) 2 1 (tp+ 2 a 2  a 2

so +sA (tp) s(tp)+s~p]
r s 2 sr. p 2 2 3p s t

In computing these we have assumed that AI, A 2P "s (0) are independent.

F riction

In treating iriction we assume that 9m is given by the expression

Tog fot
T W,i Cm =  0 t- ') Te (Tr) dTr +tgm

and write

d f2 N WOf f Ai (t + fTo + 11) -(9m-mo ) m cosy (27)
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where N is taken as

W
N-Wm cos 5+-y +(m f + e mAf) "

So long as N =, 0 we may write
t

W (1f oAt L (+ h) m]+[2(t) ('o+ h) W imm] t) + g'd + t +

T0 g cos Y t3 1 g 0 t . (28)

- I T 0 I(o+h)wmc

An approximate expression for 6f follows by iteration. When this is done

there results -
i W iWm (%o+h) )](

6f(tp)= + g- tmltp)+ g m(tp

IT ('o + h)

gCosYt3  -( W cos Y t
61 p I m p

To gcosy t [ 4V( 0 + h)1 1 _02 I T

( o  +  h) t3  2 2 (n 0°  + h) TI Wm [o 7- 2 + ITJ

A more accurate solution can be obtained by writing Eq. (28) as

C (t) 6 f + D (t, r) bf (,r) dr = E (t) (29)

and solving Eq. (29) numerically. By converting to the variable t= tp u we

have

d 6
L (u) O'f (u) + M (u, -dv = N(u)

Splitting the range (0, 1) into n equal subintervals there results
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k-1

[ k )+M(mM( )BN ;

M= 1

f(0).=O ef (1) N(/'f(= f n'( L( ) +M( ,

Rail Curvature

As a final item we consider rail curvature. In this case all we present

is an integral equation. Any solution of this equation hinges on an assumed form

for rail curvature. If AR denotes the difference e - 0 where OR is theRRR
angular response in the presence of rail curvature Eq. (4) reduces to

d A(t) +2 Wm d [ fM -a)+ a f a)a- At)R AR Ig dt m m m m m a

-a m W - Cos(aC [bf'(m-a) + a f'(g +b)

T c T (30)" "T- f (tm ) +  r m

It is worth noticing that rail curvature introduces a thrust misalignment in a

sense. The appropriate integral equation is
t W

A(t) AR f+ (td) r - m f ( a) - c f (9n a)

RR Ig mn m m m m

t + a Ojm'-a 9 m]

I Wo m Cos Y C b f' (m-a) + a f' ( + b)] + T f(m)- T m  dT.

This Is. again of the form which Eq. (19) solves numerically.

! " 0
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